Testing of algorithms for automated processing of geological databases in mineral quality control flowcharts

Authors: Yakovlev A.M.

The toughened requirements imposed on the quality of minerals and processing products, as well as the tendency of drop in the average contents of useful components, increase in harmful impurities, growing mining depths and haulage distances call for modern approaches to the appraisal of geo-resources, to the integrated management and to enhancement of mining efficiency. The article presents the research results on automated processing of detailed and operational exploration information in a unified format of databases of modern mining and geological information systems for solving problems connected with mining quality management and planning. The express analysis algorithm of the variability of mineral quality attributes is based on public information programs and on the high-level programming language Python. Modeling is used to analyze the change in the estimate parameters of mineral quality in different directions of mine field development (longitudinal, transverse) with sections characterized by different steps of mining front advance and excavation panel lengths. The number of wells and sampling intervals are correlated with the calculated coefficients of variation. The mineral quality control flowcharts are proposed for different coefficients of variation and degrees of complexity of ore–rock interfaces.

Keywords: geoinformation science, geological databases, modeling, mine planning, mineral quality management, automation, express-analysis, geometrization.
For citation:

Yakovlev A. M. Testing of algorithms for automated processing of geological databases in mineral quality control flowcharts. MIAB. Mining Inf. Anal. Bull. 2021;(5—1):248— 257. [In Russ]. DOI: 10.25018/0236_1493_2021_51_0_248.


The article is based on the R&D project implemented within the framework of the Basic Research Program of the Governmental Academies of Sciences, Topic 1: Methods to Take into Account Transient Processes in Mining Deep-Seated Mineral Deposits of Complex Structure, No. 0405-2019-0005.

Issue number: 5
Year: 2021
Page number: 248-257
ISBN: 0236-1493
UDK: 622.341:658.562.64:519.72
DOI: 10.25018/0236_1493_2021_51_0_248
Article receipt date: 15.12.2020
Date of review receipt: 15.02.2021
Date of the editorial board′s decision on the article′s publishing: 10.04.2021
About authors:

Yakovlev A. M., researcher, Quality management sector, Institute of Mining of Ural branch of RAS, Ekaterinburg, Russia, quality@igduran.ru.

For contacts:

1. Yakovlev V. L., Kornilkov S. V., Sokolov I. V. Innovacionnyj bazis strategii kompleksnogo osvoeniya resursov mineral’nogo syr’ya [Innovative basis of the strategy of integrated development of mineral resources]. pod red. chl.-kor. RAN V. L. Yakovleva. Ekaterinburg: UrO RAN, 2018. 360 p. DOI:10.25635/IM.2018.18.37360 [In Russ]

2. Yakovlev V. L. Issledovanie perekhodnyh processov novoe napravlenie v razvitii metodologii kompleksnogo osvoeniya georesursov [Research of transition processes — a new direction in the development of the methodology of integrated development of geo-resources]. Ekaterinburg: UrO RAN, 2019. 284 p. DOI: 10.25635/IM.2020.54.57311 [In Russ]

3. Kantemirov V. D., Yakovlev A. M., Titov R. S. Evaluation of quality indicators of mineral resources using geoinformation technologies of block modeling. Geoinformatika. 2020. no. 3. pp. 29—37. DOI: 10.47148/1609—364X-2020—3-29—37 [In Russ]

4. Procenko A. V., Bajrov ZH. B., Fedotov G. S., Zartenova L. G. The use of economic indicators in the methodology of medium-term planning of mining operations in the mining and geological information system Micromine. MIAB. Mining Inf. Anal. Bull. 2018. no. 8. pp. 208—216 [In Russ]

5. Lukichev S. V., Nagovicin O. V., Semenova I. E., Belogorodcev O. V. Mineframe podhody k resheniyu zadach proektirovaniya i planirovaniya gornyh rabot. Innovacionnye napravleniya v proektirovanii gornodobyvayushchih predpriyatij [Mineframe-approaches to solving problems of mining design and planning]. Sborniknauchnyhtrudov. Sankt-Peterburg. 2017. no. 198. pp. 50—59 [In Russ]

6. Dowd P., Xu C., Coward S. Strategic Mine Planning and Design: Some Challenges and Strategies for Addressing Them. Min. Technol. 2016, 125, pp. 22—34

7. Dimitrakopoulos R. Advances in Applied Strategic Mine Planning. Springer: Berlin/ Heidelberg, Germany, 2018; 800 p.

8. Seéguret S. A., Emery X. Géostatistique de Gisements de CuivreChiliens: 35 Années de Recherche Appliqueé. Presses des Mines: Paris, France, 2019; 264 p.

9. Mery. N., Emery. X., Cáceres. A., Ribeiro. D., Cunha. E. Geostatistical modeling of the geological uncertainty in an iron ore deposit. Ore. Geol. Rev. 2017, 88, pp. 336—351.

10. Gholamnejad, J., Azimi, A., Teymouri, M. Application of stochastic programming for iron ore quality control. Journal of Mining and Environment, 9(2), 2018, pp. 331—338. doi: 10.22044/jme.2018.5952.1409.

11. R. Chicoisne, D. Espinoza, M. Goycoolea, E. Moreno, E. Rubio A new algorithm for the open-pit mine production scheduling problem. Oper. Res., 60 (3), 2012, pp. 517—528

12. N. L. Mai, E. Topal, O. Erten A new open-pit mine planning optimization method using block aggregation and integer programming. J. South. Afr. Inst. Min. Metall., 118 (2018).

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.