Causes of degradation of production data in flotation of copper-bearing sulfide ore extracted from cupriferous pyrite deposit by open stoping

Copper is a non-ferrous heavy metal in high demand in economy. In the meanwhile, the global copper resources diminish irrespective of the commercial type of ore deposits. The article gives the test data of three ore samples taken from different sites of the same ore body within a cupriferous pyrite deposit subjected to mining by the stoping method. Based on the analyses of chemistry, grain composition and mineralogy of the three samples: Sample 1 (Cu = 2.91%, As=0.54%, S=33.9%); Sample 2 (Cu =1.87%, As=0.43%, S=25.65%); Sample 3 (Cu= =1.30%, As=0.55%, S=14.95%) and lab-scale in-process flotation tests, it is found that at the same qualitative composition of minerals, all samples have different quantitative composition of minerals and grain composition. Thus, the flotation production data of the samples using the same flow chart differ. Copper sulfides are chalcopyrite, tennantite, bornite and micro-sized copper noddles in pyrite. Melnikovite as a species of floatable pyrite is present in a greater degree in Sample 1 and in a lesser degree in Sample 3. The least content of copper (Sample 3) goes with much fee chalcopyrite and a fewer sulfide sulfur but 1.3 of sulfur is elemental sulfur. The kinetics of increment in the check size (-71 μm) in milling is inversely proportional the content of natural minerals in a sample. Better quality copper concentrates of the first multistage flotation are obtained in rough milling (content of the check size -71 μm is 30%). In case of Sample 1 containing 43% of copper in pyrite, the lowest loss of copper is achieved in 4-stage milling and multistage dressing. Aiming to have stable production data of copper concentrate (quality of 18% and above at the recovery more than 82%), it is required to introduce blending of the produced ore, or a system of real-time control of the ore feed in order to timely modify the reagent regime (type of sulfhydryl collector or a composition of sulfhydryl collectors, range of pH or residual concentration of CaO, inclusion of aeration, etc.) and the flow chart (number of milling stages).

Keywords: flotation, copper sulfides, material constitution, production data, stoping mining method.
For citation:

Ignatkina V. A., Makavetskas A.R., Kayumov A. А., Aksenova D. D. Causes of degradation of production data in flotation of copper-bearing sulfide ore extracted from cupriferous pyrite deposit by open stoping. MIAB. Mining Inf. Anal. Bull. 2021;(9):5-22. [In Russ]. DOI: 10.25018/0236_1493_2021_9_0_5.

Acknowledgements:
Issue number: 9
Year: 2021
Page number: 5-22
ISBN: 0236-1493
UDK: 622.7
DOI: 10.25018/0236_1493_2021_9_0_5
Article receipt date: 02.05.2021
Date of review receipt: 15.06.2021
Date of the editorial board′s decision on the article′s publishing: 10.08.2021
About authors:

V.A. Ignatkina1, Dr. Sci. (Eng.), Assistant Professor, Professor, e-mail: woda@mail.ru,
A.R. Makavetskas1, Leading Engineer, e-mail: algis_m@mail.ru, Center for Resource-Saving Technologies for Processing Mineral Raw Materials,
Kayumov A.A.1, Cand. Sci. (Eng.), Leading Engineer, LLC «Research and Development Enterprise Center-ESTAgeo», Moscow, Russia, e-mail: maliaby_92@mail.ru,
D.D. Aksenova1, Graduate Student, e-mail: jokime@rambler.ru,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

V.A. Ignatkina, e-mail: woda@mail.ru.

Bibliography:

1. Marsden J. O. Technological innovation and sustainable competitive advantage in the copper industry — Real or imaginary? IMPC 2018. 29th International Mineral Processing Congress. Moscow, 2019.

2. Volkov A. V., Sidorov A. A. Mineral wealth of the Pacific Ore Belt. Vestnik Rossiyskoy akademii nauk. 2019, vol. 89, no. 2, pp. 157—165. [In Russ]. DOI: 10.31857/S0869-5873892157-165.

3. Baranov V. F. Review of the operating experience of foreign processing plants processing sulfide and mixed copper ores. Obogashchenie Rud. 2020, no. 3, pp. 43—47. [In Russ]. DOI: 10.17580/or.2020.03.08.

4. Lavrinenko A. A. State and development trends of flotation machines for solid mineral processing in Russia. Tsvetnye metally. 2016, no. 11, pp. 19—26. [In Russ]. DOI: 10.17580/tsm.2016.11.02.

5. Xun Wang, Peng Gao, Jie Liu, Xiaotian Gu, Yuexin Han Adsorption performance and mechanism of eco-friendly and efficient depressant galactomannan in flotation separation of chalcopyrite and molybdenite. Journal of Molecular Liquids. 2021, vol. 326, article 115257, available at: https://doi.org/10.1016/j.molliq.2020.115257 (accessed 02.01.2021).

6. Bocharov V. A., Ignatkina V. A., Khachatryan L. S., Baatarhuu Zh. On the choice of methods for the separation of copper-molybdenum sulfide concentrate using high-molecular organic depressors. MIAB. Mining Inf. Anal. Bull. 2007, no. 8, pp. 235—242.

7. Sorokin M. M. Flotatsiya. Modifikatory. Fizicheskie osnovy. Praktika [Flotation. Modifiers. Physical basis], Moscow, NITU «MISiS», 2016, pp. 162—171.

8. Bingqiao Yang, Deru Wang, Tianshuai Wang, Hanquan Zhang, Feifei Jia, Shaoxian Song Effect of Cu2+ and Fe3+ on the depression of molybdenite in flotation. Minerals Engineering. 2019, no. 130, pp. 101—109, available at: https://doi.org/10.1016/j.mineng.2018.10.012 (accessed 16.10.2018).

9. Hongjia Zhu, Yubiao Li, Clement Lartey, Wanqing Li, Gujie Qian Flotation kinetics of molybdenite in common sulfate salt solutions. Minerals Engineering. 2020, vol. 148, article 106182, available at: https://doi.org/10.1016/j.mineng.2020.106182 (accessed 11.01.2020).

10. Yang Chen, Xumeng Chen, Yongjun Peng The effect of sodium hydrosulfide on molybdenite flotation in seawater and diluted seawater. Minerals Engineering. 2020, vol. 158, article 106589, available at: https://doi.org/10.1016/j.mineng.2020.106589 (accessed 14.08.2020).

11. Pestriak I. V., Morozov V. V., Otchir E. Modelling and development of recycled water conditioning of copper-molybdenum ores processing. International Journal of Mining Science and Technology. 2019, no. 2, pp. 313—317.

12. Fornasiero D., Fullston D., Li C., Ralston J. Separation of enargite and tennantite from non-arsenic copper sulfide minerals by selective oxidation or dissolution. Mineral Processing. 2001, no. 61, pp. 109—119.

13. Fullston D., Fornasiero D., Ralston J. Zeta potential study of the oxidation of copper sulfide minerals. Colloids and Surfaces. Physicochemical and Engineering Aspects. 1999, no. 146, pp. 113—121.

14. Petrus H., Hirajima T., Sasaki K., Okamoto H. Separation mechanism of tennantite and chalcopyrite with flotation after oxidation using oxygen. 27th International Mineral Processing Congress. Chile. Santiago. 2014. pp. 150—156.

15. Sasaki K., Takatsugi K., Ishikura K., Hirajima T. Spectroscopic study on oxidative dissolution of chalcopyrite, enargite and tennantite at different pH values. Hydrometallurgy. 2010, vol. 100, no. 3—4, pp. 144—151.

16. Kayumov A. A. Povyshenie effektivnosti izvlecheniya mineralov gruppy bleklykh rud iz kolchedannykh medno-tsinkovykh rud na osnove selektivnykh reagentnykh rezhimov flotatsii [Improving the efficiency of recovery of minerals of the group of fahl ores from pyrite copperzinc ores on the basis of selective reagent flotation regims], Candidate’s thesis, Moscow, NITU «MISiS», 2020. https://misis.ru/science/dissertations/2019/3501/

17. Nedosekina T. V., Glembotskiy A. V., Bekhtle G. A., Novgorodova E. E. On the mechanism of action of the combination of thionocarbamates with xanthogenate in the flotation of copper-molybdenum pyrite-containing ores. Tsvetnye metally. 1968, no. 10, pp. 99—102. [In Russ].

18. Ryaboy V. I., Shendorovich V. A., Kretov V. P. The use of aeroflot in ore flotation. Obogashchenie Rud. 2005, no. 6, pp. 43—44. [In Russ].

19. Zharolla N. D., Yergeshev A. R., Ignatkina V. A. Estimation of selectivity of sulfhydryl collectors on a dithiophosphate basis. MIAB. Mining Inf. Anal. Bull. 2020, no. 11, pp. 14—26. [In Russ]. DOI: 10.25018/0236-1493-2020-11-0-14-26.

20. Bocharov V. A., Ignatkina V. A., Khachatryan L. S., Khersonskiy M. I., Bondarev A. A., Komarovskiy V. L. Patent RU 2499633. MPK B03 D 103/00. 27.11.2013. [In Russ].

21. Ryaboy V. I., Kretov V. P., Ryaboy I. V. Application of collectors containing tioamide groups in the flotation of copper, copper-molybdenum, and gold ores. XXX International Mineral Processing Congress IMPC 2020. Proceedings. Cape Town, South Africa. SAIMM, 2021, pp. 1269—1280.

22. Barskiy L. A., Mitrofanov S. I., Samygin V. D. Issledovanie poleznykh iskopaemykh na obogatimost' [Investigation of mineral resources for the enrichment capacity], Moscow, Nedra, 1974, 352 p.

23. Ignatkina V. A., Bocharov V. A., Makavetskas A. R., Kayumov A. A., Aksenova D. D., Khachatryan L. S., Fishchenko Yu. Yu. Rational processing of refractory copper-bearing ores. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 2018, no. 3, pp. 6—18. DOI: 10.17073/0021-34382018-3-6-18. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.