Variation of cooling efficiency of air conditioning systems in working spaces of deep mines

One of the unfavorable aerological factors in deep-level mining is the high air temperature. The safe air temperature conditions in such mines are achievable using the microclimate normalization equipment. In the most adverse heat conditions, it is required to correctly design air conditioning systems for the working spaces in deep mines. The air temperature and barometric pressure grow with increasing depth, which induces the change in the moisture content and density of air, which are important for the assessment of cooling efficiency of the air conditioning systems. This study aims at the quantitative analysis of the effect exerted by these physical peculiarities induced by the increasing barometric pressure of air with depth on the cooling efficiency of an underground mine air conditioning system. The influence of the decreased maximum moisture content of air on the required cooling efficiency of the air conditioning systems are the same temperature and growing barometric pressure of air with depth is investigated. It is found that the temperatures of the wet bulb thermometer and dew point grow with the increasing depth. The higher wet bulb thermometer temperature worsens operation of the irrigation cells. The cooling efficiency of air conditioners is affected by the change in the air density and maximum moisture content with the increasing depth. The required increase in the cooling efficiency of air conditioners is estimated, and the cooling efficiency–depth curves are plotted. It is found that the required cooling efficiency can go up several times given certain conditions. The main factor of such increase is the change in the maximum moisture content of air. The causes of the essential growth in the cooling efficiency of air conditions are discussed.

Keywords: air conditioning system, air cooler, i–d diagram, moisture condensation, barometric pressure, deep mine, dew point temperature.
For citation:

Olkhovskiy D. V., Zaitsev A. V., Semin M. A. Variation of cooling efficiency of air conditioning systems in working spaces of deep mines. MIAB. Mining Inf. Anal. Bull. 2021;(12):110-119. [In Russ]. DOI: 10.25018/0236_1493_2021_12_0_110.

Acknowledgements:

The study was supported by the Ministry of Science and Education of the Russian Federation within the framework of State Contract No. 075-03-2021-374 dated 29 December 2020.

Issue number: 12
Year: 2021
Page number: 110-119
ISBN: 0236-1493
UDK: 622.4
DOI: 10.25018/0236_1493_2021_12_0_110
Article receipt date: 27.08.2021
Date of review receipt: 30.09.2021
Date of the editorial board′s decision on the article′s publishing: 10.11.2021
About authors:

D.V. Olkhovskiy1, Engineer, e-mail: demexez@gmail.com,
A.V. Zaitsev1, Dr. Sci. (Eng.), Head of Sector, e-mail: aerolog.artem@gmail.com,
M.A. Semin1, Cand. Sci. (Eng.), Researcher, e-mail: mishkasemin@gmail.com,
1 Mining Institute of Ural Branch, Russian Academy of Science, 614007, Perm, Russia.

 

For contacts:

D.V. Olkhovskiy, e-mail: demexez@gmail.com.

Bibliography:

1. Kuyuk A. F., Ghoreishi-Madiseh S. A., Hassani F. P. Closed-loop bulk air conditioning. A renewable energy-based system for deep mines in arctic regions. International Journal of Mining Science and Technology. 2020, vol. 30, no. 4, pp. 511—516.

2. Alabyev V. R., Novikov V. V., Pashinyan L. A., Bazhina T. P. Normalization of thermal mode of extended blind workings operating at high temperatures based on mobile mine air conditioners. Journal of Mining Institute. 2019, vol. 237, pp. 251—258. [In Russ].

3. Pretorius J. G., Mathews M. J., Mare P., Kleingeld M., Rensburg J. Implementing a DIKW model on a deep mine cooling system. International Journal of Mining Science and Technology. 2019, vol. 29, no. 2, pp. 319—326.

4. Qing Zheng, Ying Ke, Hongfu Wang Design and evaluation of cooling workwear for miners in hot underground mines using PCMs with different temperatures. International Journal of Occupational Safety and Ergonomics. 2020, vol. 26, pp. 1—11.

5. Mackay L., Bluhm S., Van Rensburg J. Refrigeration and cooling concepts for ultra-deep platinum mining. The 4th International Platinum Conference, Platinum in transition «Boom or Bust», The Southern African Institute of Mining and Metallurgy, 2010, pp. 285—292.

6. Krasnoshtein A. E., Kazakov B. P., Shalimov A. V. Modeling of the processes of non-stationary heat exchange between the mine air and the rock mass. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2007, no. 5, pp. 77—85. [In Russ].

7. Kazakov B. P. Zaitsev A. V. Research of the processes of formation of the thermal regime of deep mines. Vestnik Permskogo gosudarstvennogo tekhnicheskogo universiteta. 2014, no. 10, pp. 91—97. [In Russ].

8. Maurya T., Karena K., Vardhan H., Aruna M., Raj M. G. Potential sources of heat in underground mines — a review. Procedia Earth and Planetary Science. 2015, vol. 11, pp. 463—468.

9. Karelin V. N., Kravchenko A. V., Levin L. Yu., Kazakov B. P., Zaitsev A. V. Features of the formation of microclimatic conditions in the mine workings of deep mines. Gornyi Zhurnal. 2013, no. 6, pp. 65—68. [In Russ].

10. Galaov R. B., Balchugov V. G., Kazakov B. P., Butakov S. V. A method for normalizing microclimatic conditions in the workings of deep mines. Gornyi Zhurnal. 2015, no. 6, pp. 89—92. [In Russ].

11. Malcev S. V., Semin S. A., Kormshikov D. S., Method for determining the aerodynamic drag coefficients of mine shafts of copper-nickel mines. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2020, no. 6, pp. 170—178. [In Russ].

12. Kuznetsov S. I. Molekulyarnaya fizika. Termodinamika [Molecular physics. Thermodynamics], Tomsk, TPU, 2006, 104 p.

13. Semin M., Zaitsev A. On a possible mechanism for the water build-up formation in mine ventilation shafts. Thermal Science and Engineering Progress. 2020, vol. 20, article 100760. DOI: 10.1016/j.tsep.2020.100760.

14. Burtsev S. I., Tsvetkov Yu. N. Vlazhnyy vozdukh. Sostav i svoystva [Humid air. Composition and properties], Saint-Petersburg, SPbGAKHPT, 1998, 146 p.

15. Tarabanov M. G., Korkin V. D., Sergeev V. F. Spravochnoe posobie. AVOK 1-2004 «Vlazhnyy vozdukh», available at: http://www.gosthelp.ru/text/AVOKSpravochnoeposobie120. html (accessed 05.04.2021).

16. Rivkin S. L., Aleksandrov A. A. Teplofizicheskie svoystva vody i vodyanogo para [Thermophysical properties of water and water vapor], Moscow, Energiya, 1980, 84 p.

17. Ashrae Handbook. Fundametals. Ashrae, Atlanta, 2001.

18. Kazakov V. G., Gromova E. N. Raschet sistemy konditsionirovaniya vozdukha v proizvodstvennom pomeshchenii [Calculation of the air conditioning system in the production room], Saint-Petersburg, VSHTE SPbGUPTD, 2018, 54 p.

19. Ekkert E. R., Dreyk R. M. Teoriya teploi massoobmena [Theory of heat and mass transfer], Moscow-Leningrad, Gosenergoizdat, 1961, 576 p.

20. Nesterenko A. V. Osnovy termodinamicheskikh raschetov ventilyatsii i konditsionirovaniya vozdukha [Fundamentals of thermodynamic calculations of ventilation and air conditioning], Moscow, Vysshaya shkola, 1971, 460 p.

21. Bogoslovskiy V. N., Kokorin O. YA., Petrov L. V. Konditsionirovanie vozdukha i kholodosnabzhenie [Air conditioning and refrigeration supply], Moscow, Stroyizdat, 1985, 367 p.

22. Stefanov E. V. Ventilyatsiya i konditsionirovanie vozdukha [Ventilation and air conditioning], Leningrad, VVITKU, 1970, 399 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.