Bibliography: 1. Kutepov Yu. I., Kutepova N. A., Ponomarenko M. R., Kutepov Yu. Yu. Geomechanical monitoring of slope stability in pitwall and dumps in coal mining. Gornyi Zhurnal. 2023, no. 5, pp. 69—74. [In Russ]. DOI: 10.17580/gzh.2023.09.11.
2. Klyuev R. V., Brigida V. S., Lobkov K. Y., Stupina A. А., Tynchenko V. V. On the issue of monitoring crack formation in natural-technical systems during earth surface displacements. MIAB. Mining Inf. Anal. Bull. 2023, no. 11-1, pp. 292—304. [In Russ]. DOI: 10.25018/0236_1493_2023_111_0_292.
3. Zakharov V. N., Kaplunov D. R., Klebanov D. A., Radchenko D. N. Methodical approaches to standardization of data acquisition, storage and analysis in management of geotechnical systems. Gornyi Zhurnal. 2022, no. 12, pp. 55—61. [In Russ]. DOI: 10.17580/gzh.2022.12.10.
4. Golik V. I., Burdzieva O. G. Geophysical monitoring of Sadon field development technology. Geology and Geophysics of Russian South. 2023, no. 13(3), pp. 180—192. [In Russ]. DOI: 10.46698/ VNC.2023.26.85.014.
5. Golik V. I., Dzaparov V. Kh., Liskova M. Yu., Maslennikov S. A. Minimization of the risk of contamination of residential areas with dust during open mining of ores. Occupational Safety in Industry. 2024, no. 1, pp. 56—60. [In Russ]. DOI: 10.24000/0409-2961-2024-1-56-60.
6. Melkov D., Zaalishvili V., Burdzieva O., Kanukov A. Temporal and spatial geophysical data analysis in the issues of natural hazards and risk assessment (in example of North Ossetia, Russia). Applied Sciences. 2022, vol. 12, article 2790. DOI: 10.3390/app12062790.
7. Kongar-Syuryun Ch. B., Kovalski E. R. Hardening backfill at potash mines: promising materials regulating stress-strain behavior of rock mass. Geology and Geophysics of Russian South. 2023, vol. 13, no. 4, pp. 177—187. [In Russ]. DOI: 10.46698/VNC.2023.34.99.014.
8. Kuz'min M. P., Larionov L. M., Kondratiev V. V., Grigoriev V. G., Kuz'mina A. S. Use of the burnt rock of coal deposits slag heaps in the concrete products manufacturing. Construction and Building Materials. 2018, vol. 179, pp. 117—124. DOI: 10.1016/j.conbuildmat.2018.05.222.
9. Gladkih A. M., Konyuhov V. Yu., Galyautdinov I. I., Shchadova E. I. Green building as a tool of energy saving. IOP Conference Series: Earth and Environmental Science. 2019, vol. 350, no. 1, article 012032. DOI: 10.1088/1755-1315/350/1/012032.
10. Kang K., Huang S., Liu W., Cheng H., Fomenko I., Zhou Y. Sandstone slope stability analysis under wetting-drying cycles based on generalized hoek-brown failure criterion. Frontiers in Earth Science. 2022, vol. 10, article 838862. DOI: 10.3389/feart.2022.838862
11. Konyuhov V. Yu., Gladkih A. M., Galyautdinov I. I., Shchadova E. I. Calculations of efficiency in implementing progressive mold forming methods. IOP Conference Series: Materials Science and Engineering. 2020, vol. 760, no. 1, article 012027. DOI: 10.1088/1757-899X/760/1/012027.
12. Kondrat'ev V. V., Gorovoy V. O., Kolosov A. D., Kononenko R. V., Konyukhov V. Y. Description of the complex of technical means of an automated control system for the technological process of thermal vortex enrichment. Journal of Physics: Conference Series. 2020, vol. 1661, no. 1, article 012101. DOI: 10.1088/1742-6596/1661/1/012101.
13. Zolotarev G. S. Genetic types of landslides, their development and study. Materialy soveshchaniya po izucheniyu opolzney i mer bor'by s nimi [Materials of a meeting on the study of landslides and measures to combat them], Kiev, Izd-vo KGU, 1964, pp. 165—170.
14. Nikoobakht S., Azarafza M., Akgün H., Derakhshani R. Landslide susceptibility assessment by using convolutional neural network. Applied Sciences. 2022, vol. 12, article 5992. DOI: 10.3390/ app12125992.
15. Brigida V. S., Dmitrak Yu. V., Gabaraev O. Z., Golik V. I. Use of destressing drilling to ensure safety of donbass gas-bearing coal seams extraction. Occupational Safety in Industry. 2019, no. 3, pp. 7—11. [In Russ]. DOI: 10.24000/0409-2961-2019-3-7-11.
16. Kaverzneva T., Rodionov V., Skripnik I., Zhikharev S., Polyukhovich M. Determination of the miners’ individual injury risk as a result of the dynamic manifestation of rock pressure. E3S Web of Conferences. 2023, vol. 458, article 08011. DOI: 10.1051/e3sconf/202345808011.
17. Kulikova E. Yu., Balovtsev S. V., Skopintseva O. V. Complex estimation of geotechnical risks in mine and underground construction. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 1, pp. 7—16. [In Russ]. DOI: 10.21177/1998-4502-2023-15-1-7-16.
18. Pham B. T., Bui D. T., Dholakia M., Prakash I., Pham H. V. A comparative study of least square support vector machines and multiclass alternating decision trees for spatial prediction of rainfallinduced landslides in a tropical cyclones area. Geotechnical and Geological Engineering. 2016, vol. 34, pp. 1807—1824. DOI: 10.1007/s10706-016-9990-0.
19. Hong H., Pourghasemi H. R., Pourtaghi Z. S. Landslide susceptibility assessment in Lianhua County (China). A comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology. 2016, vol. 259, pp. 105—118. DOI: 10.1016/j.geomorph. 2016.02.012.
20. Suprun E., Tynchenko V., Khramkov V., Kovalev G., Soloveva T. The use of artificial intelligence to diagnose the disease. BIO Web of Conferences. 2024, vol. 84, article 01008. DOI: 10.1051/ bioconf/20248401008.
21. Hong H., Tsangaratos P., Ilia I., Chen W., Xu C. Comparing the performance of a logistic regression and a random forest model in landslide susceptibility assessments. The case of Wuyaun Area, China. Advancing Culture of Living with Landslides. Workshop on World Landslide, Forum. 2017, pp. 1043—1050. DOI: 10.1007/978-3-319-53498-5_118.
22. Chen W., Pourghasemi H. R., Naghibi S. A. A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China. Bulletin of Engineering Geology and the Environment. 2018, vol. 77, pp. 647—664. DOI: 10.1007/s10064-017-1010-y.
23. Borodulin A., Gladkov A., Gantimurov A., Kukartsev V., Evsyukov D. Using machine learning algorithms to solve data classification problems using multiattribute dataset. BIO Web of Conferences. 2024, vol. 84, article 02001. DOI: 10.1051/bioconf/20248402001.
24. Chen W., Pourghasemi H. R., Zhao Z. A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping. Geocarto International. 2017, vol. 32, pp. 367—385. DOI: 10.1080/10106049.2016.1140824.
25. Kondratiev V. V., Karlina A. I., Guseva E. A., Konstantinova M. V., Kleshnin A. A. Processing and application of ultra disperse wastes of silicon production in construction. IOP Conference Series: Materials Science and Engineering. 2018, vol. 463, no. 3, article 032068. DOI: 10.1088/1757899X/463/3/032068.
26. Kulikova E. Yu., Konyukhov D. S. On the determination of buildings technological deformations in geotechnical construction. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 2, pp. 187—197. [In Russ]. DOI: 10.21177/1998-4502-2022-14-2-187-197.
27. Klyuev S. V., Kashapov N. F., Radaykin O. V., Sabitov L. S., Klyuev A. V., Shchekina N. A. Reliability coefficient for fibreconcrete material. Construction Materials and Products. 2022, vol. 5, no. 2, pp. 51—58. DOI: 10.58224/2618-7183-2022-5-2-51-58.
28. Novoselov O. G., Sabitov L. S., Sibgatullin K. E., Sibgatullin E. S., Klyuev A. S., Klyuev S. V., Shorstova E. S. Method for calculating the strength of massive structural elements in the general case of their stress-strain state (kinematic method). Construction Materials and Products. 2023, vol. 6, no. 3, pp. 5—17. DOI: 10.58224/2618-7183-2023-6-3-5-17.
29. Shestopalov V. L., Fomenko V. A., Sokolov A. A., Miroshnikov A. S. Comparative analysis of deformation methods for seismic activity monitoring in mountainous areas of the Black Sea coast and Kamchatka. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 4, pp. 535—543. [In Russ]. DOI: 10.21177/1998-4502-2021-13-4-535-543.
30. Gridina E. B., Borovikov D. O. Identification of the causes of injuries based on occupational risk assessment maps at the open-pit coal. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 114—128. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_114.
31. Kirsanova N., Nevskaya M., Raikhlin S. Sustainable development of mining regions in the Arctic zone of the Russian Federation. Sustainability. 2024, vol. 16, article 2060. DOI: 10.3390/ su16052060.
32. Tananykhin D. S., Struchkov I. A., Khormali A., Roschin P. V. Investigation of the influences of asphaltene deposition on oilfield development using reservoir simulation. Petroleum Exploration and Development. 2022, vol. 49, no. 5, pp. 1138—1149. DOI: 10.1016/S1876-3804(22)60338-0.
33. Azarafza M., Ghazifard A., Akgün H., Kaljahi E. Landslide susceptibility assessment of South Pars Special Zone, southwest Iran. Environmental Earth Sciences. 2018, vol. 77, article 805. DOI: 10.1007/s12665-018-7978-1.
34. Castellanos Abella E. A., Van Westen C. J. Qualitative landslide susceptibility assessment by multicriteria analysis: a case study from San Antonio del Sur, Guantanamo, Cuba. Geomorphology. 2008, vol. 94, no. 3-4, pp. 453—466. DOI: 10.1016/j.geomorph.2006.10.038.
35. Kulikova E. Yu., Ivannikov A. L. The terms of soils removal from the defects of the underground structures’ lining. Journal of Physics: Conference Series. 2020, vol. 1425, no. 1, article 012062. DOI: 10.1088/1742-6596/1425/1/012062.
36. Malyukova L. S., Martyushev N. V., Tynchenko V. V., Kondratiev V. V., Bukhtoyarov V. V., Konyukhov V. Y., Bashmur K. A. Circular mining wastes management for sustainable production of Camellia sinensis (L.) O. Kuntze. Sustainability. 2023, vol. 15, no. 15, article 11671. DOI: 10.3390/ su151511671.
37. Bosikov I. I., Klyuev R. V., Silaev I. V. Comprehensive analysis and assessment of Prospective gold-ore zones using modern geophysical methods. Geology and Geophysics of Russian South. 2022, vol. 12, no. 2, pp. 89—102. [In Russ]. DOI: 10.46698/VNC.2022.32.98.007.
38. Kusimova E., Saychenko L., Islamova N., Drofa P., Safiullina E., Dengaev A. Application of machine learning methods for predicting well disturbances. Journal of Applied Engineering Science. 2023, vol. 21, no. 1, pp. 76—86. DOI: 10.5937/jaes0-38729.