Прогнозирование термического воздействия подземного нефтепровода на многолетнемерзлые породы на основе математических моделей

при подземной прокладке нефтепроводов, в условиях залегания многолетнемерзлой породы (ММП), по которой осуществляется перекачка нефти с подогревом, кроме процессов, связанных с сезонным оттаиванием и замерзанием грунтов, может произойти процесс оттаивания мерзлоты от термического воздействия трубопровода. При оттаивании и замерзании ММП возможно пучение и просадка грунтов, образование наледи, заболачивание трассы нефтепровода и т. д. Вследствие этого существует вероятность пространственного перемещения, выпучивания участков, деформации трубопроводов, что в итоге может привести к аварийным ситуациям. В работе исследуется термическое воздействие нефтепровода на ММП на основе математических моделей. В ходе исследований была изучена математическая модель Стефана. Для получения наглядных результатов были использованы математические методы моделирования на общедоступных программах. В результате моделирования предложен вариант использования нефтепровода с теплоизоляцией и осуществления заблаговременного проведения мероприятий по предупреждению чрезвычайных ситуаций обусловленного нефтеразливом и максимально возможного снижения ущерба.

Ключевые слова: замерзание, оттаивание, многолетнемерзлые породы, нефтепровод, математическое моделирование.
Как процитировать:

Егорова Т. Р., Кычкина В. Г., Колесов А. Е. Прогнозирование термического воздействия подземного нефтепровода на многолетнемерзлые породы на основе математических моделей // Горный информационно-аналитический бюллетень. — 2022. — № 10-1. — С. 205—213. DOI: 10.25018/0236_1493_2022_101_0_205.

Благодарности:
Номер: 10
Год: 2022
Номера страниц: 205-213
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2022_101_0_205
Дата поступления: 20.03.2022
Дата получения рецензии: 27.06.2022
Дата вынесения редколлегией решения о публикации: 10.09.2022
Информация об авторах:

Егорова Туйаара Руслановна1 — зав. лабораторией, e-mail: tuyaruslanovna@mail.ru, ORCID ID: 0000–0002–7117–9218;
Кычкина Вилена Григорьевна1 — старший преподаватель, e-mail: kychkina.v.g@gmail.com, ORCID ID: 0000–0003–1419–3715,
Колесов Александр Егорович1 — кандидат физ.-мат. наук, доцент Геологоразведочного факультета, e-mail: Ae.kolesov@s-vfu.ru, ORCID ID: 0000–0001–9969–1195;
1 Северо-Восточный федеральный университет им. М. К. Аммосова.

 

Контактное лицо:

Егорова Т. Р., e-mail: tuyaruslanovna@mail.ru.

Список литературы:

1. Oswell, J. M. (2011). Pipelines in permafrost: geotechnical issues and lessons. Canadian Geotechnical Journal, 48(9), 1412−1431.

2. Resolution of the Council of Ministers of the USSR of November 10, 1967 N 1029 On the procedure for applying the Decree of the Presidium of the Supreme Soviet of the USSR of September 26.

3. Efimov, V. M et al. (2019). Geotechnical monitoring in permafrost zone as a condition for ensuring engineering and environmental safety of industrial development of the territory. Materials of the XV All-Russian Scientific and Practical Conference «Prospects for the development of engineering surveys in construction in the Russian Federation» (Moscow).

4. Zhang, J et al. (2010). Estimates on thermal effects of the China–Russia crude oil pipeline in permafrost regions. Cold Regions Science and Technology, 64(3), 243−247.

5. Samylovskaya, E., Makhovikov, A., Lutonin, A., et al. (2022). Digital Technologies in Arctic Oil and Gas Resources Extraction: Global Trends and Russian Experience, Resources, 21100808642, 11. DOI: 10.3390/resources11030029.

6. Nagare, R M et al. (2021). Modeling shallow ground temperatures around hot buried pipelines in cold regions. Cold Regions Science and Technology, 187, 103295.

7. Osterkamp, T. E. and Burn, C. R. (2003). Permafrost Encyclopedia Atmospheric Sciences Ed,1717−1729.

8. Buslaev, G., Morenov, V., Konyaev, Y., et al. (2021). Reduction of carbon footprint of the production and field transport of high-viscosity oils in the Arctic region, Chemical Engineering and Processing. Process Intensification, 02552701, 159 DOI: 10.1016/j.cep.2020.108189.

9. Taranov, R. A. and Marchenko, A. V. (2019). Features of the design, construction and operation of oil trunk pipelines in permafrost zones. Journal of Science and Education, 12(66−1).

10. Tsarapov, M. N. and Kotov, P. I. (2013). Properties of frozen soils during thawing. Railway Track and Facilities, 31–34.

11. CR 36.13330.2012 Code of practice trunk pipelines.

12. Romasheva, N., Dmitrieva, D. (2021). Energy resources exploitation in the russian arctic: Challenges and prospects for the sustainable development of the ecosystem, Energies, 62932, 14. DOI: 10.3390/en14248300.

13. Zhukovskiy Y, Tsvetkov P, Buldysko A, Malkova Y, Stoianova A, Koshenkova A. (2021) Scenario Modeling of Sustainable Development of Energy Supply in the Arctic. Resources, 10(12):124. DOI: 10.3390/resources10120124.

14. Russian Federation Government Decree № 613 from 21.08.2000. «On urgent measures to prevent and eliminate emergency spills of oil and oil products».

15. Vabishchevich, P. N. et al. (2016). Numerical analysis of temperature dynamics of railway embankment in permafrost, Mathematical Models, 28(10), 110–124.

16. Alnæs, M. S. et al. (2015). The FEniCS Project Version 1.5 Archive of Numerical. Software 3(100) 9–23.

17. Novikov, P. A. (2016). Identification of dangerous sections of trunk oil pipelines based on long-term forecasting of the halo of thawing of permafrost zones. Dissertation of the Candidate of Technical Sciences (Moscow) .

18. Afanaseva, N. V. and Kolesov, A. E. (2016). Numerical solution of the thermal influence of oil well cluster on permafrost. AIP Conference Proceedings, 1773(1), 110001.

19. Buslaev, G., Tsvetkov, P., Lavrik, A., et al. (2021). Ensuring the sustainability of arctic industrial facilities under conditions of global climate change, Resources, 21100808642, 10. DOI: 10.3390/resources10120128.

20. Fedorov, A. N., Gavriliev, P. P., Konstantinov, P. Y., Hiyama, T., Iijima, Y. and Iwahana, G. (2014). Estimating the water balance of a thermokarst lake in the middle of the Lena River basin, eastern Siberia. Ecohydrology, 7, 2, 188−196. DOI: 10.1002/eco.1378.

21. Pugach A. S. Mathematical model of rock compaction for operation in zones of high tectonic stresses. MIAB. Mining Inf. Anal. Bull. 2022;(6):167-181. [In Russ]. DOI: 10.2501 8/0236_1493_2022_6_0_167.

Наши партнеры

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.