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OIIPEJEJIEHUE 30H OITOJI3HEBOI OITACHOCTU
METOJIOM AHAJIU3A UEPAPXUM
HA IMTPUMEPE ITPOBUHLINU 'VAHTAHAMO

I.b. Mocnexos', K0. CaBoH', B.B. Mocenkun?
' CaHKT-TeTepbyprckuii ropHbli yHUBEpCUTET MnepaTpuubl EkatepuHbl I,
CaHkT-TeTepbypr, Poccus, e-mail: pospehov@spmi.ru
2ZHUTY «MUCuC»

Annomayus: CosgaHye MPOTHO3HBIX MOJIeJIeN MIJisk OTIpefiesIeHNsT PalfoHOB OIMOJI3HEBOM orac-
HOCTY Ba)KHO JIJISI CBOEBPEMEHHOTO MPUHSITHSI Mep B 1eJIIX PeAOTBPaIleHNsT KaTacTpod, CBs-
3aHHBIX C OTIOJI3HEBBIMM SIBJIeHMsIMU. HacTosiiiee nccienoBanue, IpoOBeIeHHOEe B TPOBUHIINU
I'yanranamo Ha KyGe, nMMeno OCHOBHOM Lie/IbIO OMpeesieHre 30H C Pa3HOM BepOSTHOCTHIO
CXOKIeHMsI OToJI3Hel. TIpMMeHsIICS MeTol MHOTOKPUTEPUATbHOTO TIPUHITHS PelleHuit, 1c-
nosib3oBaHHbli Caatu (1980), ¢ yueTom ciiemyronmx (GakTOpPOB: YroJ HaKJIOHA, BbICOTA HA[,
YPOBHEM MODSI, PACCTOSTHME IO PeK, PACCTOSTHME IO PasjioMa, PacCTOsTHYE A0 JOPOT, CpemqHe-
rOIOBO€ KOJIMYECTBO OCAMKOB, JIMTOJIOTHS, MOIIIHOCTb, TUIT M MEXaHUUYECKUI COCTaB TOYBHI,
a Takke HaJMume pacTUTETbHOCTU. BecoBble KO3 duimeHTsl HakTOpOB ObUIM OMpeneseHbl
C TIOMOIIIbIO MeToma aHanusa uepapxuii (MAU), a pelTMHIY KiaaccoB (GakTOpPOB ObLIU TTPU-
CBOEHBI ITyTeM JIOTMYECKOTO CYXIeHUsl. IHIeKChI BePOSITHOCTH JIJISl OTIOJI3HEBOW OMACHOCTHU
ONpeNessuINCh Ha OCHOBE HelpephIBHOM YMCIOBON IIKaIbI, Pa3pabOTaHHO sl STOM Liesn.
Bb1I0 yCTaHOBJIEHO, UTO 30HBI BHICOKOW ¥ YMEPEHHOV BEPOSITHOCTY COOTBETCTBYIOT CE€Bepo-
BOCTOKY MPOBMHIIMYU ['yaHTaHaMO, [JIsT KOTOPOJ XapaKTePHbI BBICOKAS MJIOTHOCTh Pa3JIOMOB U
TUIIPOJIOTMYECKONM CETY Y MAJIOMOIITHbBIE TJIMHUCTbIE TPYHTBI. B 3TOV 30HE TaKk)Ke MpeCcTaBIeHbl
B OCHOBHOM TTOPOAbI MeTaMopduueckoro 1 ohroanTOBOro KOMILIEKCOB, B LI€JIOM, C CUITbHO Ha-
pYIIeHHOM cTpyKTypoii. KpuBas ormepalioHHbIX XapakTepucTuk npuemanka (ROC) nmokasasa
TpyieMJieMble pe3ysbTaThl. KpoMe TOro, olleHKa prcka IoKasasia BbICOKME VI OUeHb BbICOKME
PUCKM [IJIS1 HACEJIEHNST STUX PaliOHOB.

Kntoueessvte cnoea: meton ananmusa mnepapxuii (MAN), I'yantanamo, 30HMpOBaHME PaiOHOB
OIMOJI3HEBOM omacHocTH, Kyb6a, OIosi3HM, rpaBUTAIVIOHHBIE TIPOIIECCHI, OMOI3HEBAST ONTACHOCTD,
mkaia BaskHoctu Caaru.
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Abstract: The creation of predictive models to determine areas susceptible to landslides is im-
portant for timely management towards disaster prevention of these phenomena. The present
study in the province of Guantanamo in Cuba had as main objective the landslide susceptibility
zonation (LSZ). The multicriteria decision method used by Saaty (1980) was adopted, consid-
ering the factors; slope angle, elevation, distance to rivers, distance to fault, distance to roads,
average annual rainfall, lithology, soil depth, soil type, texture and vegetation. Factor weights
were determined through the Analytical Hierarchy Process (AHP) and factor class ratings were
assigned through logical judgment. Landslide susceptibility indices were determined based on
a continuous numerical scale developed for this purpose. It was found that the zones of high
and moderate susceptibility corresponded to the northeast of the Guantdnamo province, which
are characterized by a high density of faults and the hydrological network, shallow soils with
clayey composition. This zone is also constituted fundamentally by rocks of the metamorphic
and ophiolitic complexes, in general, very structurally affected. The receiver operating charac-
teristic (ROC) curve showed acceptable results. In addition, the risk assessment indicated that
populations at high to very high risk.

Key words: Analytical Hierarchy Process (AHP), Guantanamo, landslide susceptibility zona-
tion, Cuba, landslides, gravitational processes, landslide hazard, nine-point importance scale,
according to Saaty.
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Introduction

In the Latin American and Caribbean
region, geological processes, especially
landslides, represent one of the most dan-
gerous geological processes related to ex-
ogenous geodynamic processes [1—2].
These phenomena make a significant con-
tribution to the evolution of the relief and
landscape of the Earth's surface in many
areas, drastically change the conditions
of the geological environment, and are
among the most damaging geological haz-
ards in the world. Landslides threaten to
create extreme vulnerability to cities and
ecosystems [3—5], which is aggravated
by the evolution of demographic condi-
tions, driven by uncontrolled urbanization
and the increase in anthropic pressures in
high-risk areas [6], environmental degra-
dation and change global climate [7—9].

At the international level, numerous
studies of landslide phenomena are car-
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ried out, mainly focused on the study of
factors that determine the susceptibility of
the geological environment to these phe-
nomena [10—12].

It should be noted that all these studies
are based on the development of predic-
tion models to determine the susceptibil-
ity of the land to landslides, based on top-
ographic, geomorphological, lithological,
land use data, geomechanical properties
of rocks, hydrogeological and hydrologi-
cal conditions between others [13—17].
These factors are directly related to the
deformations that occur in rock masses
[18—22]. Other authors have considered
in their studies that factors such as prox-
imity to faults and lineaments, proximity
to bodies of water and construction activi-
ties, particularly roads, are important el-
ements that can contribute to the occur-
rence of landslides [23—25]. In addition
to the conditioning factors, other authors



have considered the so-called trigger fac-
tors such as rainfall [26 — 30].

There are many modeling techniques
and approaches to assessment landslide
susceptibility [31, 32]; although there is
no majority consensus on the effectiveness
of one over the other, the susceptibility
assessment using AHP is one of the most
used by authors to analyze susceptibil-
ity to landslides [33—35]. The AHP is a
technique considered as a pairwise matrix
analytical process used by Saaty [36] to
know the weight and geometric mean of
the different parameters. Many researchers
used the AHP technique to assign weight
to criteria and sub-criteria based on expert
knowledge and experiences [37 — 39]. Ma-
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ny applications have been reported from
various parts of the world [40, 41].

Study area

The study area corresponds to the prov-
ince of Guantanamo, which is located in
the eastern part of the island of Cuba, de-
limited by latitude 20°8'39.98. N and lon-
gitude 75°12'33.01" O. It has limits to the
north with the province of Holguin, to the
south with the Caribbean Sea, to the west
with the province of Santiago de Cuba and
to the east with the Paso de los Vientos
and covers an area of 6,178 km?, which
represents 5.6% of the total area of the
Cuban archipelago (Fig. 1). This province
is characterized by having one of the most
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vigorous reliefs in our country and where
around 75% of its territory is part of the
Nipe-Sagua Baracoa mountain range.

Geology

The study area is very complex from a
geological and structural point of view due
to the occurrence of a set of tectonic epi-
sodes that have overlapped and have con-
siderably affected the distribution of rock
complexes that affect the properties of the
rocks present and therefore the quality of
rock complexes. In the geological evolu-
tion of the study area, its rocks have been
subjected to various processes that have
led to the formation of 4 fundamental rock
complexes: metamorphic complex, which
presents the oldest rocks, with different
degrees of weathering and high deforma-
tion mainly constituted by green schists
of volcanic rocks [42]. These rocks are
metamorphosed under conditions of very
low grade and high pressure. The main
geological formation in this complex, due
to its great extension and the lithological
and structural complexity it presents, is the

Sierra del Purial Formation, mainly com-
posed of schists.

Towards the center and north of the
study area, the ophiolitic complex is de-
veloped with a predominance of rocks
from an ancient oceanic crust with hazbur-
gites, lherzolites, and serpentine dunites
as the main rocks. The Paleogene Island
Arc rock complex is characterized by its
low complexity from a structural point of
view and its homogeneity from a litholog-
ical point of view, and is mainly made up
of tuffs. Finally, there are the rocks of the
cover. Composed of sedimentary rocks
with a wide distribution, which generally
present smooth folds of wide radius and
the stratification is quite horizontal. The
oldest rocks have been more exposed to
different tectonic processes that have af-
fected the quality of the rock masses.

Materials and methods

In the present study, the Analytical
Hierarchy Process (AHP) technique, pro-
posed by Saaty (1980), was applied to
evaluate landslide susceptibility zoning

Cuban Geological Sentinel & Institute of Soils Mountain
Data - Service — Planetscope Cuba Development
+ images J Center
-
4
Lithology + + ¢
Faults and | DEM | | NDVI |—> Land Drainage/River
Proximity to
Data Type A v
Slope angle
\ 4 N 7 T v y
( . | Thematic maps |
Landslide inventory +
Data 1
Processin | < Modelling using
Validation AHP Method
I

Result >

Landslide susceptibilit

Fig. 2. General methodology followed in the present study
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in the area. In this technique, the method
of weighted sum of factors is used, tak-
ing into account ten factors that have an
impact on the occurrence of this type of
phenomenon in the Guantanamo province
to create thematic maps. A hierarchy of
conditioning factors was used, making a
comparison between pairs through a ma-
trix; Subsequently, weights were assigned
for each factor and a consistency relation-
ship that quantifies the ambiguity in the
analysis [36, 43]. Fig. 2 shows the meth-
odology followed for the study.

Dataset

Different data sources were used
for the creation of the thematic layers
(Table 1). The geological map at a scale of
1:100,000 from the Institute of Geology
and Paleontology and the soil parame-
ters (depth and soil texture) at a scale of
1:100,000 from the Institute of Soils of
Cuba were included in the analysis.

Table 1

List of data and data sources used in the study

Conditioning factors

The conditioning factors used for the
AHP decision-making process were; slope
angle, elevation, distance to river, litholo-
gy, distance to faults, soil depth and tex-
ture, distance to road, vegetation, and
average annual rainfall. This approach is
convenient and effective for landslide sus-
ceptibility studies. As a limitation, we can
consider that the type of failure and earth-
quakes are not included as the trigger fac-
tor in the analysis, which can lead to sig-
nificant uncertainties.

The main geological formations that
have a lithological behavior susceptible to
the occurrence of landslides were defined
using morphometric and structural criteria.
The soil map was used according to the
UCS Unified Soil Classification System
classification, since it better adapts to en-
gineering-geological criteria. The Sentinel
satellite images of the years 2016 and 2017
were processed with which the normalized

CnuMcoK AaHHbIX U UCTOYHMUKOB AaHHbIX, NCMNOJIb30BAHHbIX B UCC/1efOBaHNN

Data

Description

Source

Digital Elevation Model

(DEM) (resolucion 12,5 m) | images

Derived from Sentinel

https://www.esa.int/

Slope inclination (°)

Derived from MDT 12,5 m

Sentinel images

Elevation (m)

Derived from MDT 12,5 m

Sentinel images

Lithology
format

Geologic map in vector

Institute of Geology and Paleonto-
logy / Cuban Geological Service

Faults and lineament
format

Geologic map in vector

Institute of Geology and Paleonto-
logy / Cuban Geological Service

Soil properties (depth
and texture)

Soil map in vector format

Institute of Soils Cuba

Vegetation/NDVI

Derived from Sentinel images

https://www.esa.int/

Proximity to river

River map in vector format

Mountain Development Center, Cuba

Proximity to roads

Roads map in vector format

Mountain Development Center, Cuba

Rainfall

Rainfall map in raster format

Landslide Inventory

Point data on past landslides
digitized from previous study

Previous landslide inventory map [42]
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Table 2

Nine-point importance scale, according to Saaty (1980) [36]

Likana BaxxHocTn Caatu (1980) [36]

1/9 1/7 1/5 1/3 3 5 7 9
Extremely Very Strongly Moderately  Equally Moderately  Strongly Very Extremely
Strongly Strongly
Less Very
important important

Intermediate
values

; (2I4’6I8)

Preference made halfway

vegetation index was calculated for both
moments and by subtraction of images
the change of use model was obtained for
areas with slopes greater than 10 degrees,
which are the more susceptible to the oc-
currence of the phenomena analyzed.

The thematic layer of roads from the
Mountain Development Center belonging
to the Cuban Environment Agency was
used. Buffer analyzes were carried out to
know the zones of influence with respect
to the zones with the occurrence of land-
slides. The hydrographic network of the
study area is one of the densest in the
country, for which reason the permanent
channels were selected and a buffer analy-
sis was carried out at 500 m.

Landslide susceptibility evaluation

The Analytical Hierarchy Process (AHP)
is one of the GIS-based techniques ap-
plied to landslide susceptibility zoning
[44—46]. The objective of the technique
is to obtain a landslide susceptibility in-
dex (LSI), based on expert judgments
expressed through pairwise comparisons
using a preference scale, which allows the
generation of priority scales.

In order to understand the relative con-
tributions of these conditioning factors, in
inducing land susceptibility to landslides,
the different factors were ranked and a
comparison was made between pairs. The
pairwise comparison was based on expert
judgment, where the relative influence of
factors on the occurrence of landslides
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was considered. Finally, they provided
the corresponding weights for each of the
conditioning factors analyzed. The stand-
ard scale that was followed to carry out
the comparisons by pairs was proposed by
Saaty [47, 48] (Table 2).

The weights for each causative factor
and a consistency ratio (CR) that quantifies
the unambiguity for the pair-wise compar-
ison were worked out (Saaty, 1980) [36].

The consistency ratio (CR) is defined
as the ratio in between the consistency in-
dex (Ci) and the random index (Rct) com-
puted from a large number of randomly
generated positive reciprocal matrices of
order n [48]. Equation (1) CR is calculated
using equation (2).

CR = Ci/Rci, )
A__—n

CI — Z“max R 2
e (2)

where ‘A’ refers to maximum eigen
value of composition matrix and ‘n’ is the
order of composition square matrix.

The random index (Rcti) is calculated
using equation (3)

Rei = 128" (n=2) (3)
n

The priority vector is considered to
have an acceptable inconsistency when the
CR is less than 10% [36, 49].

Landslide susceptibility mapping was
performed considering the primary weights
assigned to the respective conditioning
factors using the AHP method (Table 3);
the respective ranges for each class of fac-



Table 3

Conditioning factors with their classes and ranges regarding their influence
on the occurrence of landslides
O6ycnasnnBaioLume GaKTopbl, MX KNAcCbl U AUANAa30Hbl MX BAMUSHWUS Ha BO3HMKHOBEHME OMOsI3HeN

Conditioning factor Factor Class Rank Importance for instability
0-14 1 Low
o 14-22 2 Medium
Slope angle (°) 22-1%) 3 High
32—-69 4 Very high
0—-126 1 Very low
126 —289 2 Low
Elevation (m) 289—462 3 Médium
462 —649 4 High
649—-1191 5 Very hugh
> 3000 1 Low
Distance to fault (m) 2000~ 3000 2 Medium
2000— 1000 3 High
<1000 4 Very high
> 800 1 Low
Distance to river (m) 200-800 2 Medium
200—500 3 High
<200 4 Very high
> 1000 1 Low
Distance to road (m) 500—1000 2 Medium
> 500 3 High
Shallow 1 Low
. Médium Deep 2 Medium
Soil depth Deep 3 High
Very deep 4 Very high
Humic, Histosol, Saline 1 Low
Soil type Fluvisol, Lithosol 2 Medium
Brown, Ferritic 3 High
Ferralitic, Ferralic, Fersialitic 4 Very high
Sedimentary cover 1 Low
. Paleogene complex 2 Medium
Lithology Ophiolitic complex 3 High
Metamorphic complex 4 Very high
>1.722 1 Low
Vegetation/NDVI -0.149—-(-2.022) 2 Medium
<-2.022 3 High
<400 1 Low
Average annual 400—1000 2 Medium
rainfall (mm) 1000— 2000 3 High
> 2000 4 Very high
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tor were made through a logical judgment
based on knowledge where the qualification
is based on the influence of the factor in in-
ducing instability to the ground (Table 2).
A continuous scale of numerical values
was determined as a landslide susceptibil-
ity index (LSI) [45] using the equation (4),
which was used for the construction of the
landslide susceptibility map to.

LSI=Y R xw,, (4)
i=1
where R_ is the respective rating for each
conditioning factor class and w, is the
weight for corresponding considered con-
ditioning factors.

Results and discusion

In the study, all the ranges for the con-
ditioning factors involved were establi-
shed, which are shown in Table 3. In the
analysis, each one of the thematic maps
was validated with the inventory of land-
slides [42].

Topographic factors

The characteristics in the topography
is an important conditioning factor that
influences the instability of the slopes. Its
features can be spatially represented using
the digital elevation model (DEM). The
main topographic characteristics that were
considered in the landslide susceptibility
study were: slope angle and elevation. The
slope angle map for the study area was
derived from DEM in degree values rang-
ing from 0 to 69°. Furthermore, the slope
angle was reclassified into four classes, as
shown in Table 3: (i) gentle slopes, 0 — 14°,
(ii) moderately steep slopes, 14—22°, (iii)
steep slopes, 22—32°, and (iv) very steep
slopes 32— 69° (Fig. 3, a and Table 3).

By corroborating the reclassification
with the inventory, it was determined that
the slope angle class most susceptible to
landslides is considered to be very steep
slopes (32 —66°) (Fig. 3, a). The elevation

of the study area varies between 0 and
1191 m above sea level; the elevation was
reclassified in 5 class as shown in Table 3;
the elevation had little significant differ-
ence, because there is a wide distribution
of landslides in all ranges (Fig. 3, b).

Lithology, fault and soil properties

In the present study, lithology, distance
to fault, soil depth, and type were consid-
ered conditioning factors that have possi-
bly influenced landslides in the study area.

The lithology was reclassified into four
classes taking into account the formations
that constitute the different rock complex-
es. In the thematic map of the lithology of
Fig. 4, a, the largest number of invento-
ried landslides are distributed in more than
70% in the metamorphic complex gener-
ally composed of volcanic rock schists
and in the ophiolitic complex constituted
by remains of the crust. oceanic. The study
area is highly affected from a structural
point of view. By buffering the distance to
fault thematic layer, this layer was reclas-
sified into four classes that established the
following ranges of proximity to faults: (i)
<1000 m, (ii) 1000 — 2000 m, (iii) 2000 —
4000 m and (iv) > 4000 m; It was found
that most of the landslides are located in
areas less than one kilometer from the
faults (Fig. 4, b).

The type of soil was reclassified into
four classes (Table 3). A high number of
landslides was identified in the ranges of
high and very high importance for instabil-
ity represented by brown, ferralitic, ferri-
tic, ferralic and fersialitic soils (Fig. 4, c),
whose genesis comes from the rocks of
the metamorphic and ophiolitic complex.
These rocks have a clay loam, sandy loam
and sandy texture. The depth of the soils
was reclassified into four classes (Fig. 4, d,
Table 3). However, when corroborating
with the inventory, it was determined that
it does not present a significant incidence
because landslides have a wide distribu-
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tion in all class ranges, with the range of
«low depth» and «medium depth» be-
ing the ones with the highest incidence of
landslides. This corroborates what was
expressed by Pospehov [42] that generally
shallows landslides occur in the area.
Anthropogenic factors are defined as
the factors caused by human activity such
as mining [50— 53], vegetation removal,
etc [54, 55]. The distance to the road is
a very important anthropogenic factor in
the occurrence of landslides [56 — 59]. An
analysis of proximity to the road network
was carried out and it was reclassified into
three classes as shown in Fig. 5, a. The
hydrological network in the study area is
extensive. For reclassification, distances
to rivers of: (i) < 200 m, (ii) between 200
and 500 m, (iii) between 500 and 800 m
and (iv) > 800 m for a significance for in-
stability of very high, high, medium and
low respectively (Fig. 5 b and Table 3).
Rainfall is a triggering factor, which in
the region turns out to be the most impor-
tant [60, 61]. These findings confirm the re-
lationship between the occurrence of land-

Table 4

slides with intense rainfall found by other
authors [62—66]. The rainfall was reclas-
sified into four classes as shown in Table 3.
It was found that many of the inventoried
landslides coincide with the classes with
the highest accumulated rainfall (Fig. 5, d).

Landslide susceptibility evaluation

The results of the AHP comparison
matrix in Table 4 show that the maximum
weighting of the factors is accumulated
by the average annual precipitation, slope
angle, elevation and distance to fault with
0.19, 0.15, 0.14 and 0.11 respectively, fol-
lowed by the weights, distance to river
(0.09), distance to the road (0.08) and li-
thology (0.08), while factors such as veg-
etation/NDVI, have little incidence.

After computing the LS/ values for the
area, four susceptibility zones were defi-
ned: null susceptibility, low, moderate and
high. Based on this classification, a land-
slide risk zoning map of the study area was
prepared (Fig. 6). The landslide suscepti-
bility map shows that the northeast area
of the province is most affected by land-

Pair-wise comparison of conditioning factor layers and weight
lMonapHoe cpaBHeHne ypoBHeli M Beca 06ycnaBiuBaroLLmMX paKkTopoB

Factor | _le |g |e < > | |£F Sz
wn | Y8 |a & w | a2 Z5 Se

Slope angle 1.00 0.15 |0.0667
Elevation 1/2 1 1.00 0.14
Distance to fault | 1/2 | 1/2 | 1.00 0.11
Distancetoriver | 1/3 | 1/2 | 1/2 | 1.00 0.09
Distancetoroad | 1/2 | 1/3 | 1/2 1 11.00 0.08
Soil depth 13| 14| 12| 0 0 |1.00 0.07
Soil type 213 13| 1 0 1/2 | 1.00 0.07
Lithology 15| 2 2 2 2 12 | 1/6 | 1.00 0.08
Vegetation/NDVI| 1/6 | 1/5 | 16 | 16 | 1/8 | 1/7 | 1/6 | 1/2 | 1.00 0.02
Average annual
rainfall 2 2 3 2 3 2 3 2 3 11.000.19
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slides. They coincide with a high prox-
imity to faults and bodies of water. This
zone is also constituted fundamentally by
rocks of the metamorphic and ophiolitic
complexes, mainly composed of schists
and rocks of an ancient oceanic crust with
hazburgites, lherzolites, and serpentinized
dunites, respectively. The southern zone
presents in its generality moderate suscep-

tibility; It should be noted that precipita-
tion is a triggering factor that influenced
this result, since in this area the average
annual precipitation values are the lowest
in the country. Low susceptibility zones
are generally found in the western parts
of the study area, coinciding with the Guan-
tanamo Valley, which presents very low
elevation values.
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The validation of the landslide suscep-
tibility zonation (LSZ) map was carried
out with the help of data from previous
landslide inventories in the study area. It
is assumed that if past landslides in the
study area develop within very high or
high susceptibility zones on the prepared
LSZ map, the prediction model is quite
reasonable [67]. The Receiver Operating
Characteristics (ROC) method was used.
The ROC method is quite applicable and
is mainly used for validation of suscepti-
bility maps [45]. The analysis is performed
with the help of a graph representing the
rate of true positives (Y-axis). If the data
between the inventory used and the predic-
tion model built represent a coincidence,
it represents a false positive; the lack of
coincidences will represent false positives
(X axis) [68]. The study presented a high
coincidence between the areas with high
and moderate susceptibility values and the
occurrence of landslides because the curve
tends to true positive values (Fig. 7).

Conclusions

Landslides are complex exogenous pro-
cesses and require systematic monitoring
and the creation of predictive models to
analyze and delineate susceptible zones
in an area to these phenomena. Landslide
susceptibility zonation was carried out
through multiple criteria decision analy-
sis. For this purpose, ten factors that af-
fect the occurrence of landslides in the
study area were considered; they were as-
signed the appropriate weight following
the Analytical Hierarchy Process (AHP).
The factors with the highest weights were
mean annual precipitation, followed by
slope angle, elevation, and distance to
fault. The vegetation factor is the one with
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the lowest weighting value. The northeast-
ern parts of the study area are found in
zones with high and moderate susceptibil-
ity. They coincide with a high proximity
to faults and bodies of water. This zone is
also constituted fundamentally by rocks of
the metamorphic and ophiolitic complex-
es, in their generality very structurally af-
fected. These complexes are mainly com-
posed of schists and rocks of an ancient
oceanic crust with hazburgites, lherzolites,
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southern zone presents in its generality
moderate susceptibility; being the average
annual precipitation factor the one with the
greatest influence, because this area pre-
sents the lowest values in the country. Low
susceptibility zones are generally found in
the western parts of the study area, coin-
ciding with the Guantanamo Valley, which
presents very low elevation values. Using
the weights for the factors considered and
the appropriate ratings for the classes of
factors, the landslide susceptibility index
was developed to prepare the landslide
susceptibility zoning map. The map was
validated with the help of the Receiver
Operating Characteristics (ROC) method.
It was found that the calculated area under
the curve (AUC) is 0.799, which reason-
ably validates the landslide susceptibility
map of Guantanamo province.
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