Оценка экономической эффективности использования газа подземной газификации угля на традиционных электростанциях и перспективы технологии в условиях декарбонизации

В статье сравниваются инвестиции в различные варианты паросиловых установок с наиболее рациональной схемой сжигания угля или газа. Определено соотношение цены газ/уголь, при котором использование энергии газа подземной газификации угля (ПГУ) в паровых котлах имеет равную экономическую эффективность с традиционным сжиганием угля. В работе также рассмотрен опыт работы Южно-Абинской станции «Подземгаз», работавшей в советское время в Кузбассе. Предложен перспективный вариант использования технологии ПГУ в сочетании с энергетическими циклами на углекислом газе с возможностью достижения нулевых выбросов и создания угольной, но углеродно-нейтральной технологии разработки угольных месторождений.

Ключевые слова: подземная газификация угля, капиталовложения, энергетические циклы, углекислый газ, декарбонизация.
Как процитировать:

Щинников П. А., Садкин И. С. Оценка экономической эффективности использования газа подземной газификации угля на традиционных электростанциях и перспективы технологии в условиях декарбонизации // Горный информационно-аналитический бюллетень. — 2022. — № 10-1. — С. 182—193. DOI: 10.25018/0236_1493_2022_10 1_0_182.

Благодарности:
Номер: 10
Год: 2022
Номера страниц: 182-193
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2022_101_0_182
Дата поступления: 20.03.2022
Дата получения рецензии: 27.06.2022
Дата вынесения редколлегией решения о публикации: 10.09.2022
Информация об авторах:

Щинников Павел Александрович1 — докт. техн. наук, профессор, зав. каф. ТЭС НГТУ e-mail: shchinnikov@corp.nstu.ru, ORCID ID: 0000-0002-4313-6907;
Садкин Иван Сергеевич1,2 — инж.-исслед., e-mail: sadkinvanya@mail.ru, ORCID ID: 0000-0001-6516-432X;
1 Новосибирский государственный технический университет;
2 Институт теплофизики СО РАН.

 

Контактное лицо:

Садкин И. С., e-mail: sadkinvanya@mail.ru.

Список литературы:

1. Saptikov, I. M. (2017). History of UCG development in the USSR. Underground Coal Gasification and Combustion, Woodhead Publishing. URL: https://www.sciencedirect.com/ science/article/pii/B9780081003138000037 (Access date: 10.02.2022).

2. Kreynin, E. V. (2012). An analysis of new generation coal gasification projects. International Journal of Mining Science and Technology, 22(4), 509−515. DOI: 10.1016/j. ijmst.2012.01.012.

3. Fei, M. (2016). Underground coal gasification (UCG): A new trend of supplyside economics of fossil fuels. Natural Gas Industry B, 3(4), 312−322 DOI: 10.1016/J. NGIB.2016.12.007.

4. Caineng, Z., Yanpeng, C., Lingfeng, K., Fenjin SUN, Shanshan, C., Zhen D. (2019). Underground coal gasification and its strategic significance to the development of natural gas industry in China. Petroleum Exploration and Development, 46(2), 205−215. DOI: 10.1016/ S1876−3804(19)60002−9.

5. Jun, X., Lin, X., Xiangming, H., Weimin, C., Weitao, L., Zhigang, W. (2020). Technical application of safety and cleaner production technology by underground coal gasification in China. Journal of Cleaner Production, 250, 119487 (2020). DOI: 10.1016/j.jclepro.2019.119487.

6. Krejnin, E. V. (2004). Netradicionnye termicheskie tehnologii dobychi trudnoizvlekaemyh topliv: ugol’, uglevodorodnoe syr’e (Unconventional thermal technologies to extract hard-to-recover fuel: coal, hydrocarbon raw material), Moscow, OOO IRC Gazprom, 300.

7. Shchinnikov, P. A., Frantseva, A. A., & Sadkin, I. S. (2020). Evaluation of capital investments in energy equipment of a power plant by a power function. Journal of Physics: Conference Series, 1652(1) DOI: 10.1088/1742−6596/1652/1/012024 Retrieved from www. scopus.com.

8. Shchinnikov P. A., Frantseva A. A., Sadkin I. S. (2020). Poagregatnaya otsenka kapitalovlozhenii v energobloki elektrostantsii s ispol’zovaniem parametricheskoi stepennoi funktsii [Aggregate estimation of investments in power plant units using a parametric power function]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta = Science bulletin of the Novosibirsk state technical university, 2020, 2–3 (79), 123–138. DOI: 10.17212/1814−1196−2020−2-3−123−138.

9. Ravinder, K., Avdhesh, Kr. S., Tewari, P. C. (2015).Cost analysis of a coal-fired power plant using the NPV method, Journal of Industrial Engineering International,11, 495−504. DOI 10.1007/s40092−015−0116−8.

10. Explanatory note on the write-off of part of the coal reserves from the balance of the Yuzhno-Abinskaya Podzemgaz Station. (1996). OOO Kiselevskugol– Kiselevsk.

11. Antonova, R. I., Bezhanishvili, A. E., Blinderman, M. S., Grabskaya, E. P., etc. (1990). Podzemnaya gazifikatsiya uglya v SSSR (Underground coal gasification in the USSR). Moscow, AO TsNIEIugol.

12. Vorogov, A. I. (2004). Forty Years-Long Operational Experience of Yuzhno-Abinskaya Station Podzemgaz. Underground Coal Gasification Technology Development in Kuzbass: Conf. Proc., Kemerovo.

13. Meng-Tian, H., Pan-Mao, Z. (2021). Advances in Climate Change Research, 12(2), 281−286 (2021).

14. Smith, D. M., Scaife, A. A., Hawkins, E. (2018). A signal-to-noise paradox in climate science.Geophysical Research Letters, 45(21) 11895−11903. DOI: 10.1038/ s41612−018−0038−4.

15. Leung, D. Y.C., Caramanna, G., Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies.Renewable & Sustainable Energy Reviews, 36, 426−443.DOI: 10.1016/J.RSER.2014.07.093.

16. Burke, A., & Fishel, S. (2020). A coal elimination treaty 2030: Fast tracking climate change mitigation, global health and security. Earth System Governance, 3 DOI: 10.1016/j. esg.2020.100046.

17. Jewell, J., Vinichenko,V., Nacke, L., Cherp, A. (2019). Prospects for powering past coal. Nature Climate Change, 9, 592–597. DOI: 10.1038/s41558−019−0509−6.

18. Allam, S. R. (2017) Martin, and others, Energy Procedia, 114, 5948−5966.

19. Kosoi, A. S., Zeigarnik,Yu.A., Popel’,O. S., Sinkevich, M. V. Shterenberg, V. Y. (2018). The Conceptual Process Arrangement of a Steam–Gas Power Plant with Fully Capturing Carbon Dioxide from Combustion Products.Thermal Engineering, 65(9), 597−605. DOI: 10.1134/S0040601518090045.

20. Wolfgang Sanz Graz Cycle. A Zero Emission Power Plant for CCS (Carbon Capture and Storage). Retrieved from: http://www.graz-cycle.tugraz.at/ .

21. Allam, R. J. et al. (2013).High Efficiency and Low Cost of Electricity Generation from Fossil Fuels While Eliminating Atmospheric Emissions, Including Carbon Dioxide. Energy Procedia, 37, 1135–1149.DOI:10.1016/J.EGYPRO.2013.05.211.

22. Borm, G., Hawkins, D., Lee, A. (2002). Chapter 5: Underground geological storage. IPCC Special Report on carbon dioxide capture and storage. Cambridge University Press, 195–276.

23. Zhao, X., Liao, X., Wang, W., Chen, C., Rui, Z., Wang, H. (2014). The CO2 storage capacity evaluation: Methodology and determination of key factors. Journal of the Energy Institute, 87(4), 297–305. DOI: 10.1016/j.joei.2014.03.032.

24. Jiang, L. Chen, Z., Farouq Ali, S. M. (2019). Feasibility of carbon dioxide storage in post-burn underground coal gasification cavities. Applied Energy. 252(C), 1−1. DOI: 10.1016/j.apenergy.2019.113479.

25. Yang, D, Koukouzas, N., Green, M., Sheng, Y. (2016). Recent development on underground coal gasification and subsequent CO2 storage. Journal of the Energy Institute, 89(4), 469−484. DOI: 10.1016/j.joei.2014.03.032 .

26. Shchinnikov, P., Borush, O., Frantseva, A., Sadkin, I. (2021). Efficiency of zero emission cycles on the basis of their configuration. E3S Web of Conferences, 289, 02001 DOI:10.1051/e3sconf/202128902001.

27. Sadkin, I. S. (2022) Influence of the initial parameters on the thermodynamic efficiency of carbon dioxide power cycles. Journal of Physics: Conference Series, 2150, 012011. DOI: 10.1088/1742−6596/2150/1/012011

Наши партнеры

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.