Mine seismic prediction of tectonic faults by reflected waves using the method of location

The article presents the case-study of geological anomaly delineation by reflected waves in seismic logs of the common excitation point and the common receipt point using a dedicated software. The proposed data processing flow consists in consistent fulfillment of a sequence of stages. Sorting of seismic logs is followed by band and band-elimination filtering, selection of optimal filter passband and identification of interfering axes of phase synchronization of different-nature waves. The axes of phase synchronization of information-bearing waves are identified by the points of the first arrivals. By these points, ellipses are automatically drawn so that their focuses are at the excitation and receipt points while the value of doubled semi-axes is equal to the product of velocity and first arrival time of a wave. The criterion of reflecting boundaries is the distinctive approach or intersection of the ellipses in a local zone of a supposed reflecting boundary. The data processing algorithm allows revealing tectonic faults within a radius to 200 m around a roadhead. Reflecting boundaries at greater distances from roadheads are located on an estimation basis. The developed algorithm and software can be used by geophysical services and specialized geological exploration agencies for processing and analysis of seismic survey data when predicting structure of coal-and-rock masses.

Keywords: mine seismic survey, software, seismic location, seismic logs, method of ellipses.
For citation:

Antsiferov A. V., Glukhov A.A., Antsiferov V.A. Mine seismic prediction of tectonic faults by reflected waves using the method of location. MIAB. Mining Inf. Anal. Bull. 2020;(6):131-139. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-131-139.

Acknowledgements:
Issue number: 6
Year: 2020
Page number: 131-139
ISBN: 0236-1493
UDK: 550.834:622.12
DOI: 10.25018/0236-1493-2020-6-0-131-139
Article receipt date: 09.12.2019
Date of review receipt: 09.02.2020
Date of the editorial board′s decision on the article′s publishing: 20.05.2020
About authors:

A.A. Glukhov1, Dr. Sci. (Eng.), Senior Researcher, Head of Department, e-mail: Glukhov1964@yandex.ru,
A.V. Antsiferov1, Dr. Sci. (Eng.), Professor, Corresponding Member, National Academy of Sciences of Ukraine, Director,
V.A. Antsiferov1, Cand. Sci. (Eng.), Senior Researcher,
1 Republican Academic R&D Institute of Mining Geology, Geomechanics, Geophysics and Mine Surveying (RANIMI), Ministry of Education and Science of the Donetsk People's Republic, 283004, Donetsk DPR.

For contacts:

A.A. Glukhov, e-mail: Glukhov1964@yandex.ru.

Bibliography:

1. Dresen L., Rüter H. Seismic Coal Exploration, Part B, Seismics: Handbook of Geophysical Exploration, Section I. Seismic Exploration. Pergamon, 1994. 486 p.

2. Antsiferov A. V. Teoriya i praktika shakhtnoy seysmorazvedki [Theory and practice of seismic exploration in mines], Donetsk, OOO Alan, 2002, 312 p.

3. Antsiferov A. V., Glukhov A.A. Matematicheskoe modelirovanie v shakhtnoy seysmorazvedke [Mathematical modeling in seismic exploration in mines], Kiev, Naukova dumka, 2012, 255 p.

4. Zakharov V. N. Seysmoakusticheskoe prognozirovanie i kontrol' sostoyaniya i svoystv gornykh porod pri razrabotke ugol'nykh mestorozhdeniy [Seismoacoustic prediction and monitoring of rock conditions and properties when developing coal deposits], Moscow, 2002, 172 p.

5. Zakharov V. N., Zaburdyaev V. S., Artem'ev V. B. Ugleporodnye massivy: prognoz ustoychivosti, riski, bezopasnost' [Coal measures: prediction of stability, risks, safety], Moscow, Gornoe delo, 2013, 277 p.

6. Antsiferov A. V., Glukhov A.A. Review of seismograms typical for an in-seam seismic technique in conditions of different coal basins. Progressive technologies of coal, coalbed methane, and ores mining. Taylor & Francis Group, 2014, pp. 61—64.

7. Sokolov S. V., Saltymakov E.A., Kormin A. N. Integrated geophysical research of coal measures conditions in the Kuznetsk Basin. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2017, no 2, pp. 66—70. [In Russ].

8. Lu Jun, Meng Xinghun, Wang Yun Prediction of coal seam details and mining safety using multicomponent seismic data. A case history from China. Geophysics. 2016. Vol. 81. Pp. 149—165.

9. Mason I., Buchanan D., Booer A. Fault location by underground seismic survey. Institution of Electrical Engineers. 1980. Vol. 127. Pp. 322—336.

10. Shepe F. Seismic approach to studying geological structure of coal measures aided by the SUMMIT II EX system. Gornyy informatsionno-analiticheskiy byulleten'. 2012, no 10, pp. 145—154. [In Russ].

11. Gochioco L. M. Advances in seismic reflection profiling for US coal exploration. The Leading Edge. 1991. Vol. 10. No 12. Pp. 24—29. DOI: 10.1190/1.1436798.

12. Friedel M. J., Tweeton D. R., Jackson M., Jessop J.A., Billington S. Mining applications of seismic tomography. SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists, pp. 58—62.

13. Hongliang W., Maochen G. Seismic wave propagation in coal seams: finite element modeling and field tests. International Journal of Mining and Mineral Engineering. 2014. Vol. 5, No 3. Pp. 229—385.

14. Ruban A. D., Zakharov V. N., Averin A. P., Vartanov S.A. Software system for iterative nonlinear regeneration of coal seam structure and disturbance based on information parameters in in-seam seismic survey. Gornyy informatsionno-analiticheskiy byulleten'. 2010, no 3, pp. 177—182. [In Russ].

15. Zakharov V. N., Averin A. P., Vartanov S.A. Analysis of ray tomography algorithms to predict disturbance of the extraction pillar. Gornyy informatsionno-analiticheskiy byulleten'. 2010, no 3, pp. 183—190. [In Russ].

16. Waclawik P., Schott W. Utilization of innovation of the ISS method — in seam seismics at the CSM Mine. Gornicze Zagrozenia Naturalne. 2011. Vol. 2. Pp. 517—524.

17. Schott W., Waclawik W. On the quantitative determination of coal seam thickness by means of in-seam seismic surveys. Canadian Geotechnical Journal. 2015. Vol. 52. No 10. Pp. 1496-1504. DOI: 10.1139/cgj-2014-0466.

18. Schott W., Brandt K. Investigation of seam thickness and seam splitting within a longwall panel by an in-seam seismic survey. 22nd International Conference on Ground Control in Mining. 2003. Vol. 2. Pp. 152—156.

19. D. Räder, W. Schott, L. Dresen, H. Rüter Calculation of dispersion curves and amplitudedepth distributions of Love channel waves in horizontally-layered media. Geophysical Prospecting. 1985. Vol. 33. No 6. Pp. 80—86.

20. J. Belisle, R. R. Stewart In-seam GPR and 2-C seismic investigations at the Goderich, Ontario salt mine. CREWES Research Report. 1996. Vol. 8. Pp. 351—355.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.